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Abstract. The earlier-described generalized Gibbs distribution approach to the theoretical
description of non-equilibrium alloys is used to develop the microscopical theory of homo-
geneous nucleation in metastable alloys. Some exact and approximate relations for the free
energy of a non-uniform alloyF {ci} depending on the local concentrationsci are presented.
These relations are used to microscopically describe the alloy state with the critical embryo. This
state is supposed to correspond to the saddle point of the generalized grand canonical potential
in the ci -space, while the variations of the size and the position of the embryo correspond to
certain fluctuative modes at this saddle point. These notions are used to derive the microscopical
expressions for all of the parameters of the phenomenological theory of nucleation—in particular,
for the nucleation barrier and the prefactor in the Zeldovich–Volmer equation for the nucleation
rate.

1. Introduction

There are two main kinetic forms of phase transformation for an initially homogeneous
phase-separating system quenched into the two-phase equilibrium region: nucleation and
spinodal decomposition. For definiteness we discuss the disordered binary alloy AcB1−c
where c = cA is the A-component concentration. Then the kinetic evolution type is
mainly determined by the position of the initial quenched state in the concentration–
temperature planec, T . There are two important curves in this plane that delineate the
regions of different kinetic behaviour: the two-phase equilibrium curve, or the binodal
Tb(c), and the stability limit of the uniform state, or the spinodalTs(c). The first curve
is determined by the phase equilibrium equations, and the second one is determined by
the equation(∂2F/∂c2)T = 0 where F = F(c, T ) is the extrapolated or calculated
expression for the free energy of the uniform alloy. According to classical ideas [1–
5], in the metastability regionTs(c) < T < Tb(c) the homogeneous phase separation is
realized via nucleation, i.e. formation of critical and supercritical embryos of the new phase
within the original metastable one, while atT < Ts(c) the main kinetic mechanism is the
spinodal decomposition via the development of unstable concentration waves with growing
amplitudes [4]. Even though the borderline between these two evolution types in thec, T

plane can be not entirely sharp [6], the transition region between them in the available
experimental studies for both solid alloys [7] and liquid mixtures [8] was found to be quite
narrow:1T/Ts . 10−3–10−2.
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In this work we discuss the nucleation problem. When the number of embryos of the
new phase is small and their interaction is negligible (which is the case, in particular, when
the initial c, T point is close to the binodal), the nucleation rateJ , i.e. the number of
supercritical nuclei being formed in unit volume per unit time, is given by the Zeldovich–
Volmer relation derived by Zeldovich in his phenomenological theory [5]:

J = J0 exp(−β 1�c). (1)

Here β = 1/T is the reciprocal temperature, and1�c is the activation barrier for the
formation of the critical embryo, while the prefactorJ0 is determined by some kinetic
characteristics.

The theory [5] includes a number of phenomenological parameters: the size of the
critical embryoa = ac, the nucleation barrier1�c, and the kinetic factors entering the
prefactor J0. The nucleation barrier1�c is the minimal work required to create the
critical embryo [2]; when the nucleation process occurs at constant chemical potential
(which corresponds to usual experimental conditions for the first stages of nucleation under
consideration) this work is equal to the grand canonical potential difference�(ac) − �0

where�(a) corresponds to the state with the embryo of sizea, and�0 corresponds to the
initial uniform metastable state. The potential� is related to the free energyF and the total
number of atomsN as: � = F − µN . The critical sizeac corresponds to the borderline
between the unstable undercritical embryos witha < ac, and the growing supercritical
embryos witha > ac. For the undercritical embryo, its vanishing is thermodynamically
more favourable than growth: the derivative d�/da for these small embryos is positive,
as the free-energy loss due to the formation of interfaces with the exterior phase exceeds
the volume gain in� due to the presence of the more stable phase within the embryo.
For the supercritical embryos the situation reverses: for them d�/da < 0, so they can
grow spontaneously. The critical sizea = ac corresponds to the�(a) maximum point:
d�/da = 0; thus the critical embryo is in unstable equilibrium with the exterior phase.
The prefactorJ0 is expressed via several parameters that characterize the probability flow
through the�(a) maximum pointa = ac in the embryo sizea-space [5]. Analogous
phenomenological parameters are used in more recent approaches treating more complex
problems of nucleation in multi-component systems [9, 10].

The classical theory [5] (like earlier approaches [1, 2]) treats the critical embryo as
a macroscopic homogeneous droplet with the sharp boundary and the definite radiusa.
However, the microscopical estimates given in references [3] and [11] show that such notions
are adequate only when the initial metastable state is quite close to the two-phase equilibrium
limit. For alloys it corresponds to very small values of supersaturation|c− cb(T )| . 10−2,
where cb(T ) is the concentration value at the binodal. At higher supersaturations the
embryo becomes rather non-uniform while its interface with the exterior phase gets diffuse.
Therefore, to treat cases of not very small supersaturation (that are of the most practical
interest for alloys), the theory [5] should be made specific and generalized.

The microscopical approach to the calculations of the nucleation barrier1�c has been
proposed by Cahn and Hilliard [3]. These authors used the Ginzburg–Landau-type gradient
expansion for the free energyF treated as a functional of the local concentrationsc(r). The
c(r) distribution for the critical embryo was found as the saddle point configuration for this
functional. Employing both phenomenological arguments and the mean-field approximation
(MFA) to treat the functionalF {c(r)}, Cahn and Hilliard found that the critical embryo has
a number of features that are absent in the classical approach [1, 2]. In particular, with
increasing supersaturation the embryo becomes significantly non-uniform and its interface
with the exterior phase gets rather diffuse (even though the embryo can still include many
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atoms), while the nucleation barrier1�c lowers and tends to zero when the initialc, T point
approaches the spinodal. However, Cahn and Hilliard discussed only the thermodynamics
and not the kinetics of nucleation; thus no discussion of the prefactorJ0 in (1) has been
given. Possible errors of the mean-field and gradient expansion approximations employed
for F were not discussed in reference [3] either, while, for example, the fluctuative effects
neglected in the MFA can be rather important for this problem [11].

A microscopical model of nucleation has been discussed by Langer [12]. He considered
a set of non-specified ‘microscopical coordinates’ηi and supposed the critical embryo to
correspond to the saddle point of the energyE{ηi} in theηi-space. Langer has shown that the
critical normal coordinateu, for which the curvature∂2E/∂u2 at the saddle point is negative,
can be treated as an analogue of the embryo sizea in the Zeldovich theory [5] (though this
theory was not mentioned in reference [12]), while the critical sizea = ac corresponds to the
saddle point valueu = uc. Unfortunately, applications of these results to physical problems
are prevented by a number of unclear points of the model [12]: why statistical fluctuations
of microscopical variablesηi in the system with significant interactions are supposed to be
Gaussian; why the critical embryo corresponds to the saddle point of the energyE{ηi} rather
than that of the free energyF (as defined in [12]), and thus what the physical meaning of this
saddle point is; whether the assumption of [12] that the microscopical kinetic coefficients
do not depend on the dynamical variablesηi can correspond to physical situations; etc.

Recently we proposed the ‘generalized Gibbs distribution’ approach to treat the config-
urational kinetics of alloys at arbitrary degree of non-equilibrium [13, 14]. Applications of
this approach to concrete problems yielded a number of new results [13, 15–18]. In the
present work we apply this approach to develop a fully microscopical theory of nucleation
in alloys.

We adopt the main ideas and assumptions of the classical theory [5], and aim to derive
the microscopical expressions for all of its phenomenological parameters, includingJ0 and
1�c in equation (1). In accordance with the Zeldovich approach [5], the problem of finding
the nucleation rate is divided into two. First we determine the size distribution function
for the undercritical embryos. This is done using certain relations for the free energy of a
non-uniform alloy which are discussed in section 2. Secondly, we investigate the kinetics
of the probability flow through the critical pointa = ac in the embryo sizea-space. This is
done using the microscopical approach to the alloy kinetics described in references [13, 14].

In section 2 we discuss some general relations for the free energy of a non-uniform
alloy which are used below. In section 3 we discuss the microscopical description of the
alloy state with the critical embryo. In section 4 we find the above-mentioned embryo
size distribution function. In section 5 we consider growth of the embryo and derive the
explicit microscopical expressions for the nucleation barrier1�c and the prefactorJ0 in
equation (1). In the following paper [11] (to be referred to as II) these expressions are
used to calculate the nucleation rate for various alloy models. Our main conclusions are
summarized in section 6.

2. Exact and approximate relations for the free energy of a non-uniform alloy

In this section we discuss some general relations for the free energy of a non-uniform alloy.
These relations will be used below to treat the thermodynamics of nucleation, but they can
also be applied to other problems of the physics of non-uniform systems.

For simplicity we consider the binary alloy A–B. The alloy configurational states, i.e. the
distributions of A and B atoms over lattice sitesi, are described as usual, using the
occupation number operatorni which is equal to unity when an atom A is at the sitei
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and zero otherwise. The configurational HamiltonianH has the form

H =
∑
i

ϕini +
∑
i>j

vijninj +
∑
i>j>k

vijkninjnk + · · · (2)

wherevij andvijk are the configurational interactions, while the external potentialsϕi may
correspond to lattice defects, impurities, etc. Such inhomogeneities can be important for
heterogeneous nucleation when they can become centres for embryo formation. However,
in this work we consider only the homogeneous nucleation in a defectless alloy; thus in the
following sections we putϕi = 0.

The free energy of a non-uniform alloy was discussed in references [14, 18] in terms
of the probability distributionP {ni} of various alloy configurations{ni}. For the states in
which short-range equilibrium has been achieved (only such states are considered in this
work) the distribution has the form [18]

P {ni} = exp

[
β

(
�+

∑
i

λini −H
)]
. (3)

Here theλi are the parameters of the distribution, the grand canonical potential� = �{λi}
is determined by the normalization condition

� = −T ln Tr exp

[
β

(∑
i

λini −H
)]

(4)

and the symbol Tr means summation over all configurations{ni}. The free energyF = F {ci}
is determined by the relation

F = �+
∑
i

λici (5)

where ci = 〈ni〉 = Tr(niP ) is the mean occupation number, or the local concentration.
Equations (4)–(6) imply the relations

ci = −∂�/∂λi λi = ∂F/∂ci. (6)

For the stationary state the free energy obeys the equilibrium equations [14]

∂F/∂ci = µ = constant (7)

whereµ is the chemical potential.
The occupation fluctuation correlatorKij = 〈(ni − ci)(nj − cj )〉 for the distribution (4)

is related toF {ci} by the matrix equation

(K−1)ij = β ∂2F/∂ci ∂cj (8)

which follows from the relationKij = −T ∂2�/∂λi ∂λi and equations (6).
When the interactions are pairwise, i.e. Hamiltonian (2) includes only the first two

terms, one can derive an exact relation betweenKij andF {ci} which is important for what
follows. Let us consider a set of systems with interactionsgvij scaled by a ‘charge’ variable
g; the real case corresponds tog = 1. Then the quantitiesF {ci, g} andKij {ck, g} obey the
equation

F {ci, g} = T
∑
i

(ci ln ci + c′i ln c′i )+
1

2
g
∑
ij

vij cicj + 1

2

∑
ij

vij

∫ g

0
dg′ Kij {ck, g′}. (9)

Here c′i = 1− ci ; the first sum is the free energyF {ci, 0} of the non-interacting lattice
gas, and keeping in mind the application in section 4 we include in the sums overi andj
the terms withi = j , i.e. we consider in the Hamiltonian (2) also the ‘charge-dependent
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potentials’ϕi(g) = gvii/2. To derive equation (9) we can differentiate overg the expression
�{λi, g} given by equation (4) withvij (g) = gvij . According to equations (5), (6), the
partial derivative(∂�/∂g)λi at fixed λi is equal to the derivative(∂F/∂g)ci at fixed ci .
Integrating the resulting relation overg from g = 0, we obtain equation (9).

Equations (8) and (9) can be viewed as an exact and explicit set of equations for the
function F {ci}. Similar relations for uniform systems have been discussed by a number
of authors; see e.g. [19]. However, for the non-uniform systems under consideration, this
relation appears to be more useful; see below.

For actual calculations ofF {ci} one can use various approximate methods of statistical
physics, such as the MFA or cluster expansions [20, 21], as well as the approximations
based on equation (9). Below we discuss several such approximate forms ofF {ci} which
will be used in our calculations.

The simplest approximation is the MFA that neglects all statistical fluctuations and their
correlations, i.e. corresponds to neglecting the last term in equation (9). Omitting this term
and puttingg = 1, we obtain the MFA expression forF {ci}, to be denoted asFMFA.

The MFA is formally applicable, i.e. fluctuative corrections to the zero-order MFA results
are small, when the interaction range of potentialsvij includes a sufficiently large number
of sites,Nint . Then, a certain perturbation theory for finding such fluctuative corrections
has been developed for uniform systems [22], with the formal expansion parameter 1/Nint .
Equation (9) is suitable for generalizing this perturbative approach to the non-uniform case.
In the MFA applicability region, the last, fluctuative term of (9) is small. Thus to find
the correlatorKij {ci, g} in this term we can use in the rhs of equation (8) the zero-order
expressionF (0) = FMFA{ci, g}. Taking the integral overg′ and puttingg = 1, we obtain
the ‘mean-field-with-fluctuations’ expressionFMFf, that includes the first-order fluctuative
correctionF1f to the zero-order MFA result:

FMFf{ci} = FMFA + F1f (10)

F1f{ci} = T 1

2
Tr ln(1+ ẑβv̂ẑ−1) (11)

where the matrix elements of the operatorsẑ and v̂ are: (ẑ)ij = δij /cic′i and (v̂)ij = vij .
For the uniform case, the operatorẑ becomes the scalar 1/cc′, the operatorvij = v(ri −rj )
can be diagonalized by the Fourier transformation:vk,k′ = δk,k′v(k) with v(k) =∑
r v(r) exp(ik · r), and the fluctuative correction (11) takes the well-known form given,

e.g., in [22].
The higher-order fluctuative corrections not included in equation (10) are formally

proportional to 1/N2
int , and thus they may be supposed to be small. However, calculations

for uniform systems [22] have shown that the convergence of such expansions in 1/Nint
is usually slow, and the first-order correction (11) usually overestimates the fluctuative
contribution, particularly in the critical region which in alloys corresponds to the vicinity
of spinodals.

To more accurately describe the thermodynamics of alloys, more refined, cluster-
type approaches have been elaborated, such as the well known cluster-variation method
(CVM)—see e.g. [23]—and also its simplified version—the cluster-field method (CFM)
[20, 21]. These approaches consider the interactions and fluctuations within each cluster
with no approximations, but the interactions of clusters with their surroundings are treated
approximately, with the use of some self-consistent fields. The great wealth of experience
with cluster calculations for both model and real systems shows that these approaches usually
have sufficient accuracy, particularly when sufficiently large clusters are employed.
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Until now the cluster methods have been used mainly for uniform systems or for specific
non-uniform problems of high symmetry, such as that of planar antiphase boundaries
[24, 25]. However, the CFM is easily generalized to the case of arbitrary non-uniform
systems. In particular, in the simplest, pair-cluster approximation (PCA) the general
expressions for the free energyF = FPCA{ci} and its second derivative can be explicitly
written out using the results of [20, 21]:

βFPCA{ci} =
∑
i

(ci ln ci + c′i ln c′i )+
∑
i>j

[2ci ln(1− cjgij )− ln(1− cicjgij )] (12)

β ∂2FPCA/∂ci ∂cj = (K̂−1
PCA)ij = δij aii − fij /Rij . (13)

Heregij andRij are expressed via the Mayer functionfij = exp(−βvij )− 1 as follows:

gij = 2fij /[Rij + 1+ fij (ci + cj )] Rij = [1+ 2fij (cic
′
j + c′icj )+ f 2

ij (ci − cj )2]1/2

(14)

while aii = β ∂2F/∂c2
i is

aii = 1

cic
′
i

+
∑
j

4f 2
ij cj c

′
j

Rij [(Rij + 1)2− f 2
ij (ci − cj )2]

. (15)

Equations (12)–(15) show, in particular, that the effects of the interactionsvij are
described in the cluster approximations using the Mayer functionsfij rather than using
the parametersβvij characteristic of the MFA relations (10), (11). Therefore, when the
βvij -values are not small (for example, when strong competing interactions are present
[20, 21]), the cluster approaches can significantly refine the MFA, while atβvij � 1, the
PCA results (12)–(15) reduce to those of the MFA.

The cluster approaches take into consideration only the part of the correlative contrib-
utions that corresponds to the intra-cluster correlations. In particular, the PCA takes into
account only the pair correlations and neglects the many-site ones. Thus one may expect
that if one puts in equation (9) the PCA result for the correlatorKij , the resultingF will
also include some part of the ‘inter-site’ correlations, and thus it can be more accurate than
bothFMFA andFMFf in equation (10). The result of such a substitution will be referred to
as the ‘pair-cluster-with-fluctuations’ approximationFPCf:

FPCf{ci} = T
∑
i

(ci ln ci + c′i ln c′i )+
∑
i>j

vij cicj +
∑
i>j

vij

∫ 1

0
dg (K̂PCA)ij {ci, g}. (16)

The above-discussed expressionsFMFA, FMFf, FPCA, andFPCf can be viewed as a series
of successive approximations forF {ci} in which fluctuative effects are treated at various
levels of sophistication. However, the accuracy of each of such treatments is generally
not clear, and applying them to concrete problems may help us to assess this accuracy.
The applications to the nucleation problem described in II seem to show that in the cases
for which the fluctuative effects are important—and, in particular, when the degree of
inhomogeneity of the system is high—the accuracy of the above-discussed approximations
usually rises in the sequence MFf, MFA, PCA, and PCf, while employing the simple MFA
can lead to significant differences from the more accurate PCA-based approaches.

3. Microscopical description of the critical embryo

In what follows we consider the uniform disordered alloy AcB1−c quenched into the
metastability regionTs(c) < T < Tb(c). For definiteness we suppose the value of the
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concentrationc to be lower than that at the critical point(cc, Tc); thus c > cb(T ). The
supersaturation of the metastable state can be conveniently characterized with its reduced
values defined as

s = c − cb(T )
cs(T )− cb(T ) (17)

wherecs(T ) is the concentration value at the spinodal. Asc varies between the binodal
and the spinodal, the value ofs varies between zero and unity.

We shall investigate the evolution of the near-critical embryos, neglecting their inter-
action with each other. This entails assuming that their density is low, which corresponds
to low values of the supersaturations. The validity region for the approach used will be
discussed in more detail in II. The number of sitesNe within the embryo is assumed to be
large; the quantitative estimates given in II show that the relationNe � 1 usually holds for
all values ofc, T of physical interest. We also suppose the total amount of the new, A-rich
phase within the metastable one to be small, i.e. we consider only the initial stage of the
nucleation process.

The kinetic aspects of nucleation will be discussed using the master equation approach
to the alloy kinetics described in reference [14]. In particular, the time evolution of local
concentrations will be described using the kinetic equation that corresponds to the mean-field
or the cluster-field approximation of this approach:

dci
dt
= 2

∑
j

Mij sinh

[
β

2

(
∂F

∂cj
− ∂F
∂ci

)]
(18)

whereMij is the generalized mobility for which explicit expressions are presented in II.
Following the ideas of classical theory [5], we consider the state with the critical embryo

as the non-uniform alloy state for which the occupationsci obey the local equilibrium
conditions (7); thus the rhs of equation (18) vanishes for this state. However, the equilibrium
is unstable with respect to growth of the embryo, i.e. with respect to variations of a certain
variablea = a{ci} that characterizes its size.

In the microscopical approach, the stationarity equations (7) imply that the state with the
critical embryo corresponds to the extremum pointci = csi in the ci-space for the function
�{ci} = F {ci} − µN : (∂�/∂ci)µ = 0, whereN = ∑

i ci . Near this point,�{ci} varies
quadratically with the differencesδci = ci − csi :

1� = �{ci} −�{csi } =
1

2

∑
ij

Fij δci δcj (19)

whereFij = ∂2F/∂ci ∂cj .
Making the linear transformation

δci =
∑
k

Aik δuk δuk =
∑
i

Aik δci (20)

with the real coefficientsAik obeying the unitarity condition∑
i

AikAil = δkl (21)

we reduce (19) to the diagonal form

1� = 1

2

∑
k

γk(δuk)
2 (22)

whereγk are the eigenvalues of the matrixFij . The instability of the critical embryo with
respect to its growth implies that the lowest eigenvalueγ0 in (22) is negative, i.e. the
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extremum of�{ci} at ci = csi is the saddle point [3]. The ‘critical’ variableδu0 evidently
describes the size of the embryo. Therefore, this variable provides the microscopical
generalization for the ‘embryo radius variation’a − ac of the classical theory [5], while
the saddle point valueu0 = us0 corresponds to the critical sizeac.

As was mentioned by Langer [12], the transformation (20) should also include the
‘translational’ variablesδu1, δu2, δu3 (denoted below asδu) describing the position of the
embryo—e.g. that of its centreR = (R1, R2, R3). Under the full translational invariance,
for example, for liquids or vapours, the relevant eigenvaluesγα in (22) with α equal
to 1, 2 or 3 should vanish. For the crystal alloy theseγα are generally non-zero and
depend on the positionR in the crystal elementary cell. However, for the large embryos
under consideration, the values ofγα are quite low; our calculations described in II yield
|βγ1,2,3| . 10−4–10−3. Thus both for alloys and for liquids or vapours one can putγ1,2,3 = 0
and treat the translational motion of the embryo as barrierless diffusion.

Therefore, the embryo is characterized by its sizea = u0 and its positionR = R(u).
The rest variablesuk with k > 4 in the state with the embryo are supposed to have the
saddle point valuesuk = usk—that is,δuk = 0, which corresponds to the local equilibrium
conditions (7).

4. The size distribution function for embryos

Following the work described in [5], to find the nucleation rateJ in equation (1) we should
first find the probability of forming the state with the critical embryo due to statistical
fluctuations in the metastable state treated as the equilibrium one (i.e. neglecting its actual
non-stationarity). This is done in the present section. The second problem, the embryo
growth kinetics, will be considered in the next section.

The probability dw(a,R) of finding the system within the group of microscopical states
under consideration, i.e. the states in which an embryo of sizea with its centre located
within the volume d3R near the pointR is present, is proportional to the sum of the Gibbs
probabilities taken under the condition that each of microscopical variablesûα =

∑
i Aiαni

with α equal to 0, 1, 2 or 3 has the fixed valueuα. If we define the distribution function
f0(a,R) by the standard relation

dw(a,R) = f0(a,R) da d3R (23)

then we should also pass from the above-mentioned variablesu(R) to the coordinateR
using the Jacobian

DR(u) = D(u1, u2, u3)

D(R1, R2, R3)
. (24)

Therefore, the microscopical expression for the distribution functionf0(a,R) is

f0(a,R) =
∑
{ni }

exp

[
β

(
�+ µ

∑
i

ni −H
)] 3∏

α=0

δ

(
uα −

∑
i

Aiαni

)
DR(u) (25)

whereuα =
∑

i Aiαci . To perform the summation over states{ni} in equation (25), it is
convenient to write eachδ-function as a Gaussian:

δ(ûα − uα) = lim
ξα→0

(πξα)
−1/2 exp[−(ûα − uα)2/ξα]. (26)

After substitution of (26) into equation (25) we obtain

f0(a,R) =
∏
α

(πξα)
−1/2 exp

(
β�−

∑
α

u2
α/ξα

)
DR(u)Zξ . (27)
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The sums and products overα here and below include terms withα varying from 0 to 3,
while the factorZξ has the form of a statistical sum:

Zξ =
∑
{ni }

exp

[
β
∑
i

λ
ξ

i ni −
1

2
β
∑
ij

(vij + vξij )ninj
]

(28)

with the ‘potentials’λξi and the ‘additional interactions’vξij of the form

λ
ξ

i = µ+ 2T
∑
α

uαAiα/ξα v
ξ

ij = 2T
∑
α

AiαAjα/ξα. (29)

To get an idea of the character of the interactionsv
ξ

ij in (29), we note that according
to the physical meaning of equations (20) fork = 0, 1, 2, 3 (illustrated by our calculations
in II), the quantitiesAiα vary rather smoothly with the position of the sitei, having broad
maxima near the boundaries of the embryo and vanishing outside of it. As the embryo
includes the great number of sitesNe, equation (21) implies that the valuesAiα ∼ N−1/2

e are
small, while the number of sitesNξ within the interaction range of the potentialvξij is large:
Nξ ∼ Ne � 1. Therefore, if we take the auxiliary small parametersξα in (27) to be, say, of
the order ofN−δe with 0< δ < 1, interaction (29) obeys the conditions for the applicability
of the perturbative self-consistent-field method [22] whose zeroth approximation is the MFA:
|βvξij | � 1, Nξ � 1.

The MFA corresponds to neglecting the interaction of fluctuationsv
ξ

ij (ni − ci)(nj − cj )
in the ‘Hamiltonian’ of equation (28) (see e.g. [22]):∑

ij

v
ξ

ij ninj '
∑
ij

v
ξ

ij (nicj + cinj − cicj ). (30)

In accordance with equations (30), (9), the zero-order MFA contribution of the terms
with vξ to the free energy

Fξ = �ξ +
∑
i

λ
ξ

i ci (31)

(where�ξ = −T lnZξ ) has the form

Fξ {ci} = F {ci} +
∑
α

∑
ij

AiαAjαcicj /ξα. (32)

HereF {ci} is the true free energy that corresponds to the interactionvij .
However, in the exponent in equation (27) these MFA terms combine with the other

terms proportional to 1/ξα to form the expressions(uα−
∑

i Aiαci)
2/ξα that vanish according

to the definition ofuα in equation (25). The finite contribution arises only from the first
fluctuative correction invξij (that has formally the next order in 1/Ne), i.e. from the relevant
contribution to the last term of equation (9):

F
f

ξ =
1

2

∫ 1

0
dg

∑
ij

(vij + vξij )Kξ

ji(g). (33)

The correlatorKξ

ij in this first-order correction can be found using equation (8) with the
zero-order expression (32) for the free energyFξ :

{[Kξ(g)]−1}ij = βFij (g)+ 2g
∑
α

AiαAjα/ξα (34)

whereFij (g) is ∂2F(g)/∂ci ∂cj with F(g) found for the interactiongvij .
The rhs of equation (33) has the form of a matrix product trace that can be conveniently

calculated in the representation of eigenmodesuk defined by equation (20). Solving equation
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(34) for the correlatorKξ

ij in the small-ξα limit and substituting the result into equation (33),

we can writeFfξ as

F
f

ξ = Ffr +
∑
α

Iα (35)

Here Ffr is the ‘reduced’ fluctuative term that does not include the contributions of the
fluctuations of variablesu0 andu:

Ffr =
1

2

∫ 1

0
dg

∑
m>4

vmm(g)
1

βγm(g)
(36)

whereγm(g) are the eigenvalues of the matrix̂F p(g), the projection of the matrix̂F(g) in
(34) onto the subspace of variablesuk, ul with k, l > 4:

F
p
kl(g) =

∑
ij

AikFij (g)Ajl (37)

while vmm(g) is the diagonal element of the interaction matrixv̂ over the eigenvectors
corresponding to the eigenvalueγm(g).

The termsIα in (35) include the matrix

Fαβ(g) =
∑
ij

AiαFij (g)Aβj (38)

with 0 6 α, β 6 3. Let us for simplicity suppose this matrix to be diagonal (which is the
case for crystal lattices of a high symmetry such as the FCC or BCC ones discussed in II):
Fαβ(g) = Fαα(g)δαβ . ThenIα can be written as

Iα =
∫ 1

0
dg

1

ξαβFαα(g)+ 2g
. (39)

For the smallξα under consideration, only the small-g limit of the function Fαα(g) is
significant in the integral (39). Denoting for brevity the matrixβFij (0) = δij /cic′i as zij ,
we obtain

Iα = 1

2
ln

2

ξαzαα
(40)

where

zαα =
∑
ij

AiαzijAjα =
∑
i

A2
iα/cic

′
i . (41)

Using equations (29), (31), (32), (35) and (40), we see that the auxiliary factorsξα in
equation (27) cancel, and the final expression for the distribution functionf0 is

f0(a,R) = N exp(−β 1�)DR(u). (42)

HereN is an analogue of the normalizing constant of the conventional thermodynamic
fluctuation theory (see section 110 of [2]):

N =
3∏
α=0

(
zαα

2π

)1/2

(43)

1� = 1�{ci} in (42) is the grand canonical potential difference

1�{ci} = �{ci} −�(c) = 1

2
γ0(a − ac)2+ Fr{ci} − F(c)− µ(c)

∑
i

(ci − c). (44)
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Fr{ci} is the ‘reduced’ free energy that does not include the contributions of fluctuations of
the sizea and the positionR of the embryo, and has the form

Fr{ci} = FMFA{ci} + Ffr . (45)

FMFA{ci} is the MFA expression

FMFA{ci} = T
∑
i

(ci ln ci + c′i ln c′i )+
1

2

∑
ij

vij cicj (46)

and the fluctuative contributionFfr is given by equation (36).F(c) is the free energy of
the initial metastable state which is given by the general expression (9) with allci equal
to the initial concentrationc, while µ(c) is the chemical potential of this metastable state,
equal to the derivativeN−1

s ∂F (c)/∂c whereNs is the total number of lattice sites.
When the matrixFαβ(g) in equation (38) is non-diagonal (which can occur for low-

symmetry crystal lattices, such as the monoclinic ones), the product of fourzαα in
equation (43) is replaced by the determinant of the matrixβFαβ(0) = zαβ , where

zαβ =
∑
i

AiαAiβ/cic
′
i . (47)

5. The microscopical expression for the nucleation rate

Now we have to consider the kinetics of growth, i.e. the temporal evolution of the embryo
sizesa. Zeldovich [5] treated the problem using the phenomenological kinetic equation for
the size distribution functionf (a, t). In the microscopical approach, it is convenient to
consider the probabilityρ{ci, t} of finding the set of local concentrations{ci} in the alloy
state under consideration. Note that if the state is described by the probability distribution
(4) with a definite set{λi}, the setci = ci{λj } would be determined uniquely:

ρ{ci} = constant×
∏
i

δ[ci − ci{λj }].

However, the non-equilibrium alloy states can usually be characterized only in much less
detail, via some small number of mesoscopic characteristics{qα}, such as the embryo size
and position in our problem. Therefore, for an actual non-equilibrium alloy the probability
distributionρ{ci} is smooth and non-singular.

The functionρ should obey the probability conservation equation

∂ρ

∂t
+
∑
i

∂Ji

∂ci
= 0 (48)

whereJi = Ji{cj } is the probability flow in theci-space. Let us discuss the expression for
Ji . It should include the convective partJ ci = ρċi that describes the ‘drift’ probability flow,
and the diffusional termJ di that corresponds to the relaxation of the inhomogeneities ofρ{ci}
in the ci-space, and thus should be proportional to the derivatives∂ρ/∂ci , ∂2ρ/∂ci ∂cj , etc.
Physically, the diffusion is realized via the atomic jumps between neighbouring lattice sites.
The alloy states under consideration are characterized by the mesoscopic variablesqα{ci}
which are additive inci . As relative changes of such additive variables under each jump
are small, one can retain inJ di just the first-order derivatives∂ρ/∂ci ∼ (∂ρ/∂qα)(∂qα/∂ci)
and neglect the higher-order ones. Then the probability flowJi takes a ‘Focker–Planck’
form similar to that used in [5]:

Ji = ρċi −
∑
j

Dij ∂ρ/∂cj (49)
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whereDij is the diffusivity in theci-space.
For the time derivativėci in (49), we use the kinetic equation (18) which appears to be

sufficient for most applications of interest [14]. When the difference∂F/∂ci − ∂F/∂cs in
equation (18) is small—in particular, for alloy states close to the locally equilibrium one
described by equations (7)—the kinetic equation becomes linear in∂F/∂cj :

ċi =
∑
j

[
Mij − δij

∑
k

Mik

]
β ∂F/∂cj . (50)

The diffusivity Dij in equation (49) can be related to the mobilitiesMij in equation
(50) via a generalized Einstein relation similar to that used by Zeldovich [5]. To derive it,
we consider the probability distributionρ that corresponds to the full statistical equilibrium.
In this case the functionρ = ρ0{ci} does not change over time, and the probability flowJi
(49) should vanish:

ρ0ċi −
∑
j

Dij ∂ρ0/∂cj = 0. (51)

Let us apply equation (51) to the non-equilibrium state characterized by some set of
mesoscopic variablesqα{ci}. Using the same arguments as in the derivation of equation (42)
we again obtain forρ0{ci} the expression

ρ0{ci} = A exp[−β�{ci}] (52)

where the prefactorA varies under variations ofqα much more slowly than the exponent as
the latter, unlike the prefactor, is additive in the variablesci . Thus in finding the derivatives
∂ρ0{qα}/∂cj in equation (51), theci-dependence ofA can be neglected. Taking into account
that for the constant-chemical-potential case under consideration the derivatives∂F/∂cj
differ from ∂�/∂cj only by the constantµ which cancels in equation (50), we obtain from
equations (50)–(52) the generalized Einstein relation betweenDij andMij :

Dij = δij
∑
k

Mik −Mij . (53)

In the further derivation we can closely follow the Zeldovich arguments [5]. The
equilibrium function (25) correctly describes the size distribution only for undercritical
embryos whose sizesa are not close to the critical oneac. For the near-critical embryos,
the distribution should be found with the use of the kinetic equation (48). The early stages
of nucleation under consideration correspond to the constant-probability flowJ through the
saddle pointa = ac in the ci-space, while the functionρ in equation (49) can be supposed
not to change over time and to depend only on the embryo sizea = u0 defined by equation
(20) with k = 0. So one can obtain the equation for the distribution functionf (a) by
substitutingρ = f (a) in equation (49) forJ = Ja =

∑
i Ai0Ji . Using also the arguments

regarding the vanishing of the ratiof (a)/f0(a) at largea [5], we get the following relation
for f (a):

f (a)

f0(a)
= J

∫ ∞
a

da′

Daaf0(a′)
. (54)

HereDaa = D00 is the tensorDij -component that describes the diffusion along theu0 = a
direction in theci-space:

Daa =
∑
ij

Ai0

(
δij
∑
k

Mik −Mij

)
Aj0 (55)

where we have used equation (53) to expressDij in terms of the mobilitiesMij .
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At small sizesa the ratiof/f0 should approach unity [5], so the flowJ can be expressed
via the full integral overa′ in equation (54). Taking into consideration the fact that the
main contribution to the integral is made by thea′-values in the vicinity of the critical
sizeac [5], we obtain the Zeldovich–Volmer expression (1) for the nucleation rateJ . The
nucleation barrier1�c in that relation is given by the expression (44) for the saddle point
valuesci = csi that correspond to the critical embryo:

1�c = 1�{csi } (56)

and the prefactorJ0 is

J0 =
(
β|γ0|
2π

)1/2

DaaNDR(u). (57)

Hereγ0 is the same as in equation (22), whileDaa, N , andDR(u) are given by equations
(55), (43), and (24) forci = csi .

Let us make a remark on the accuracy of the expressions (56) and (57) for the parameters
1�c and J0 in equation (1). In the calculations of the exponent1�c we employed the
standard methods of statistical physics, neglecting terms of the order of unity as compared
to the additive contributions proportional toNe. Therefore, expression (57) for the prefactor
J0 holds true, strictly speaking, only up to the factor of the order of unity. However, this
expression includes all of the physically significant factors of the problem, and describes
properly their dependence on the supersaturation and the temperature.

Equations (56) and (57) provide the microscopical expression for the Zeldovich–Volmer
relation (1). Using for the free energyF {ci} and the mobilityMij in these equations the
approximate expressions described in section 2 and in reference [14], we can calculate the
nucleation rate for various alloy models. Such calculations and their physical implications
are discussed in II.

6. Conclusions

Let us summarize the main results of this work. The earlier-developed master equation
approach to the configurational kinetics of non-equilibrium alloys [14] is used to obtain the
microscopical expression for the nucleation rate at the first stages of homogeneous nucleation
in metastable alloys. To this end we present some exact and approximate relations for the
free energy of a non-uniform alloyF {ci} that can also be applied to other non-uniform
problems. In the treatment of nucleation we adopt the main ideas and assumptions of the
phenomenological theory given in [5] and derive the microscopical expressions for all of
the parameters that enter this theory. The alloy state with the critical embryo corresponds
to the saddle point of the function�{ci}, equation (19), in the multi-dimensional space
of local concentrationsci . The concentrational modes corresponding to variations of the
sizea and the positionR of the embryo are described in terms of the eigenvectors of the
matrix Fij = ∂2F/∂ci ∂cj at the saddle point. These ideas are used to derive the explicit
expression (42) for the embryo size distribution functionf0(a,R) in the metastable state
treated as the equilibrium one. The other parameter of the phenomenological theory [5], the
diffusivity Daa in the embryo size space, is obtained with the use of the earlier-suggested
kinetic equation for local concentrations [14], as well as the generalized Einstein relation
(53) between the mobilityMij entering the kinetic equation and the diffusivityDij in the
ci-space. The final equations (56) and (57) provide the microscopical expressions for the
nucleation barrier1�c and the prefactorJ0 in the phenomenological Zeldovich–Volmer
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relation (1) for the nucleation rateJ . Applications of these results to calculations ofJ for
various alloy models are described in the following paper [11].
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